Article ID Journal Published Year Pages File Type
4652893 Electronic Notes in Discrete Mathematics 2007 5 Pages PDF
Abstract

A cubic graph G is S-edge-colorable for a Steiner triple system S if its edges can be colored with points of S in such a way that the points assigned to three edges sharing a vertex form a triple in S. We show that a cubic graph is S-edge-colorable for every non-trivial affine Steiner triple system S unless it contains a well-defined obstacle called a bipartite end. In addition, we show that all cubic graphs are S-edge-colorable for every non-projective non-affine point-transitive Steiner triple system S.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics