Article ID Journal Published Year Pages File Type
4653228 European Journal of Combinatorics 2016 20 Pages PDF
Abstract

Rook theory has been investigated by many people since its introduction by Kaplansky and Riordan in 1946. Goldman, Joichi, and White in 1975 showed that the sum over kk of the product of the (n−k)(n−k)th rook numbers multiplied by the kkth falling factorial polynomials factorize into a product. In the sequel, different types of generalizations and analogues of this product formula have been derived by various authors. In 2008, Miceli and Remmel constructed a rook theory model involving augmented rook boards in which they showed the validity of a general product formula which can be specialized to all other product formulas that so far have appeared in the literature on rook theory. In this work, we construct an elliptic extension of the qq-analogue of Miceli and Remmel’s result. Special cases yield elliptic extensions of various known rook theory models.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,