Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4653284 | European Journal of Combinatorics | 2016 | 14 Pages |
Abstract
Let k be a positive integer. A sequence s1,s2,â¦,sm over an n-element A alphabet is a packing k-radius sequence, if for all pairs of indices (i,j), such that 1â¤i0 and 0â¤Î±<12, gk(n)=n22k(1âo(1)). For a constant k we show that gk(n)=n22kâO(n1.525). Moreover, we prove an upper bound for gk(n) that allows us to show that gk(n)=n(1+o(1)) for every k=âcnαâ, where c>0 and 12<α<1.
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
Zbigniew Lonc, MirosÅaw TruszczyÅski,