Article ID Journal Published Year Pages File Type
4653354 European Journal of Combinatorics 2016 16 Pages PDF
Abstract

The 25-year old LCGD Conjecture is that the genus distribution of every graph is log-concave. We present herein a new topological conjecture, called the Local Log-Concavity Conjecture. We also present a purely combinatorial conjecture, which we prove to be equivalent to the Local Log-Concavity Conjecture. We use the equivalence to prove the Local Log-Concavity Conjecture for graphs of maximum degree four. We then show how a formula of David Jackson could be used to prove log-concavity for the genus distributions of various partial rotation systems, with straight-forward application to proving the local log-concavity of additional classes of graphs. We close with an additional conjecture, whose proof, along with proof of the Local Log-Concavity Conjecture, would affirm the LCGD Conjecture.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , , ,