Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4653354 | European Journal of Combinatorics | 2016 | 16 Pages |
The 25-year old LCGD Conjecture is that the genus distribution of every graph is log-concave. We present herein a new topological conjecture, called the Local Log-Concavity Conjecture. We also present a purely combinatorial conjecture, which we prove to be equivalent to the Local Log-Concavity Conjecture. We use the equivalence to prove the Local Log-Concavity Conjecture for graphs of maximum degree four. We then show how a formula of David Jackson could be used to prove log-concavity for the genus distributions of various partial rotation systems, with straight-forward application to proving the local log-concavity of additional classes of graphs. We close with an additional conjecture, whose proof, along with proof of the Local Log-Concavity Conjecture, would affirm the LCGD Conjecture.