Article ID Journal Published Year Pages File Type
4653392 European Journal of Combinatorics 2015 30 Pages PDF
Abstract

In this article we prove that the lattice of noncrossing partitions is EL-shellable when associated with the well-generated complex reflection group of type G(d,d,n)G(d,d,n), for d,n≥3d,n≥3, or with the exceptional well-generated complex reflection groups which are no real reflection groups. This result was previously established for the real reflection groups and it can be extended to the well-generated complex reflection group of type G(d,1,n)G(d,1,n), for d,n≥3d,n≥3, as well as to three exceptional groups, namely G25,G26G25,G26 and G32G32, using a braid group argument. We thus conclude that the lattice of noncrossing partitions of any well-generated complex reflection group is EL-shellable. Using this result and a construction by Armstrong and Thomas, we conclude further that the poset of mm-divisible noncrossing partitions is EL-shellable for every well-generated complex reflection group. Finally, we derive results on the Möbius function of these posets previously conjectured by Armstrong, Krattenthaler and Tomie.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
,