Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4653395 | European Journal of Combinatorics | 2015 | 11 Pages |
Abstract
Let ch(G)ch(G) denote the choice number of a graph GG (also called “list chromatic number” or “choosability” of GG). Noel, Reed, and Wu proved the conjecture of Ohba that ch(G)=χ(G)ch(G)=χ(G) when |V(G)|≤2χ(G)+1|V(G)|≤2χ(G)+1. We extend this to a general upper bound: ch(G)≤max{χ(G),⌈(|V(G)|+χ(G)−1)/3⌉}ch(G)≤max{χ(G),⌈(|V(G)|+χ(G)−1)/3⌉}. Our result is sharp for |V(G)|≤3χ(G)|V(G)|≤3χ(G) using Ohba’s examples, and it improves the best-known upper bound for ch(K4,…,4)ch(K4,…,4).
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
Jonathan A. Noel, Douglas B. West, Hehui Wu, Xuding Zhu,