Article ID Journal Published Year Pages File Type
4653722 European Journal of Combinatorics 2013 6 Pages PDF
Abstract
Consider a face-to-face parallelohedral tiling of Rd and a (d−k)-dimensional face F of the tiling. We prove that the valence of F (i.e. the number of tiles containing F as a face) is not greater than 2k. If the tiling is affinely equivalent to a Voronoi tiling for some lattice (the so called Voronoi case), this gives a well-known upper bound for the number of vertices of a Delaunay k-cell. Yet we emphasize that such an affine equivalence is not assumed in the proof.
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
,