Article ID Journal Published Year Pages File Type
4654177 European Journal of Combinatorics 2010 16 Pages PDF
Abstract

This article presents new bijections on planar maps. At first a bijection is established between bipolar orientations on planar maps and specific “transversal structures” on triangulations of the 4-gon with no separating 3-cycle, which are called irreducible triangulations. This bijection specializes to a bijection between rooted non-separable maps and rooted irreducible triangulations. This yields in turn a bijection between rooted loopless maps and rooted triangulations, based on the observation that loopless maps and triangulations are decomposed in a similar way into components that are respectively non-separable maps and irreducible triangulations. This gives another bijective proof (after Wormald’s construction published in 1980) of the fact that rooted loopless maps with nn edges are equinumerous to rooted triangulations with nn inner vertices.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
,