Article ID Journal Published Year Pages File Type
4654260 European Journal of Combinatorics 2010 14 Pages PDF
Abstract

Mutually unbiased bases (MUBs) in complex vector spaces play several important roles in quantum information theory. At present, even the most elementary questions concerning the maximum number of such bases in a given dimension and their construction remain open. In an attempt to understand the complex case better, some authors have also considered real MUBs, mutually unbiased bases in real vector spaces. The main results of this paper establish an equivalence between sets of real mutually unbiased bases and 4-class cometric association schemes which are both QQ-bipartite and QQ-antipodal. We then explore the consequences of this equivalence, constructing new cometric association schemes and describing a potential method for the construction of sets of real MUBs.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , ,