Article ID Journal Published Year Pages File Type
4654540 European Journal of Combinatorics 2008 11 Pages PDF
Abstract

We use the Steiner distance to define a convexity in the vertex set of a graph, which has a nice behavior in the well-known class of HHD-free graphs. For this graph class, we prove that any Steiner tree of a vertex set is included into the geodesical convex hull of the set, which extends the well-known fact that the Euclidean convex hull contains at least one Steiner tree for any planar point set. We also characterize the graph class where Steiner convexity becomes a convex geometry, and provide a vertex set that allows us to rebuild any convex set, using convex hull operation, in any graph.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , ,