Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4655122 | Journal of Combinatorial Theory, Series A | 2015 | 8 Pages |
Abstract
For fixed n and k , we find a three-variable generating function for the set of sequences (λ1,…,λn)(λ1,…,λn) satisfyingk≥λ1a1≥λ2a2≥…≥λnan≥0,where a:=(a1,…,an)=(1,2,…,n)a:=(a1,…,an)=(1,2,…,n) or (n,n−1,…,1)(n,n−1,…,1). When k→∞k→∞ we recover the refined anti-lecture hall and lecture hall theorems. When a=(1,2,…,n)a=(1,2,…,n) and n→∞n→∞, we obtain a refinement of a recent result of Chen, Sang and Shi. The main tools are elementary combinatorics and Andrews' generalization of the Watson–Whipple transformation.
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
Sylvie Corteel, Jeremy Lovejoy, Carla Savage,