Article ID Journal Published Year Pages File Type
4655415 Journal of Combinatorial Theory, Series A 2013 10 Pages PDF
Abstract

When a v-set can be equipped with a set of k-subsets so that every 2-subset of the v-set appears in exactly (or at most, or at least) one of the chosen k-subsets, the result is a balanced incomplete block design (or packing, or covering, respectively). For each k, balanced incomplete block designs are known to exist for all sufficiently large values of v that meet certain divisibility conditions. When these conditions are not met, one can ask for the packing with the most blocks and/or the covering with the fewest blocks. Elementary necessary conditions furnish an upper bound on the number of blocks in a packing and a lower bound on the number of blocks in a covering. In this paper it is shown that for all sufficiently large values of v, a packing and a covering on v elements exist whose numbers of blocks differ from the basic bounds by no more than an additive constant depending only on k.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics