Article ID Journal Published Year Pages File Type
4655447 Journal of Combinatorial Theory, Series A 2013 17 Pages PDF
Abstract

We prove a multivariate strengthening of Brentiʼs result that every root of the Eulerian polynomial of type B is real. Our proof combines a refinement of the descent statistic for signed permutations with the notion of real stability—a generalization of real-rootedness to polynomials in multiple variables. The key is that our refined multivariate Eulerian polynomials satisfy a recurrence given by a stability-preserving linear operator.Our results extend naturally to colored permutations, and we also give stable generalizations of recent real-rootedness results due to Dilks, Petersen, and Stembridge on affine Eulerian polynomials of types A and C. Finally, although we are not able to settle Brentiʼs real-rootedness conjecture for Eulerian polynomials of type D, nor prove a companion conjecture of Dilks, Petersen, and Stembridge for affine Eulerian polynomials of types B and D, we indicate some methods of attack and pose some related open problems.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, ,