Article ID Journal Published Year Pages File Type
4655660 Journal of Combinatorial Theory, Series A 2012 19 Pages PDF
Abstract

In this paper, we obtain infinitely many non-trivial identities and inequalities between full rank differences for 2-marked Durfee symbols, a generalization of partitions introduced by Andrews. A certain strict inequality, which almost always holds, shows that identities for Dysonʼs rank, similar to those proven by Atkin and Swinnerton-Dyer, are quite rare. By showing an analogous strict inequality, we show that such non-trivial identities are also rare for the full rank, but on the other hand we obtain an infinite family of non-trivial identities, in contrast with the partition theoretic case.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics