Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4655749 | Journal of Combinatorial Theory, Series A | 2011 | 10 Pages |
A notion of degeneration of elements in groups is introduced. It is used to parametrize the orbits in a finite abelian group under its full automorphism group by a finite distributive lattice. A pictorial description of this lattice leads to an intuitive self-contained exposition of some of the basic facts concerning these orbits, including their enumeration. Given a partition λ, the lattice parametrizing orbits in a finite abelian p-group of type λ is found to be independent of p. The order of the orbit corresponding to each parameter, which turns out to be a polynomial in p, is calculated. The description of orbits is extended to subquotients by certain characteristic subgroups. Each such characteristic subquotient is shown to have a unique maximal orbit.