Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4655779 | Journal of Combinatorial Theory, Series A | 2011 | 8 Pages |
Abstract
Let (X,S) denote an association scheme where X is a finite set. For a prime p we say that (X,S) is p-covalenced (p-valenced) if every multiplicity (valency, respectively) of (X,S) is a power of p. In the character theory of finite groups Ito's theorem states that a finite group G has a normal abelian p-complement if and only if every character degree of G is a power of p. In this article we generalize Ito's theorem to p-valenced association schemes, i.e., a p-valenced association scheme (X,S) has a normal p-covalenced p-complement if and only if (X,S) is p-covalenced.
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics