Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4655945 | Journal of Combinatorial Theory, Series A | 2009 | 24 Pages |
We define a perfect matching in a k-uniform hypergraph H on n vertices as a set of ⌊n/k⌋ disjoint edges. Let δk−1(H) be the largest integer d such that every (k−1)-element set of vertices of H belongs to at least d edges of H.In this paper we study the relation between δk−1(H) and the presence of a perfect matching in H for k⩾3. Let t(k,n) be the smallest integer t such that every k-uniform hypergraph on n vertices and with δk−1(H)⩾t contains a perfect matching.For large n divisible by k, we completely determine the values of t(k,n), which turn out to be very close to n/2−k. For example, if k is odd and n is large and even, then t(k,n)=n/2−k+2. In contrast, for n not divisible by k, we show that t(k,n)∼n/k.In the proofs we employ a newly developed “absorbing” technique, which has a potential to be applicable in a more general context of establishing existence of spanning subgraphs of graphs and hypergraphs.