Article ID Journal Published Year Pages File Type
4656094 Journal of Combinatorial Theory, Series A 2008 11 Pages PDF
Abstract

Given integers k,l⩾2, where either l is odd or k is even, we denote by n=n(k,l) the largest integer such that each element of An is a product of k cycles of length l. For an odd l, k is the diameter of the undirected Cayley graph Cay(An,Cl), where Cl is the set of all l-cycles in An. We prove that if k⩾2 and l⩾9 is odd and divisible by 3, then . This extends earlier results by Bertram [E. Bertram, Even permutations as a product of two conjugate cycles, J. Combin. Theory 12 (1972) 368–380] and Bertram and Herzog [E. Bertram, M. Herzog, Powers of cycle-classes in symmetric groups, J. Combin. Theory Ser. A 94 (2001) 87–99].

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics