Article ID Journal Published Year Pages File Type
4656102 Journal of Combinatorial Theory, Series A 2008 6 Pages PDF
Abstract

For positive integers s and k1,k2,…,ks, the van der Waerden number w(k1,k2,…,ks;s) is the minimum integer n such that for every s-coloring of set {1,2,…,n}, with colors 1,2,…,s, there is a ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2) for fixed m. We include a table of values of w(k,3;2) that are very close to this lower bound for m=3. We also give a lower bound for w(k,k,…,k;s) that slightly improves previously-known bounds. Upper bounds for w(k,4;2) and w(4,4,…,4;s) are also provided.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics