Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4656116 | Journal of Combinatorial Theory, Series A | 2011 | 10 Pages |
Abstract
The probability for two monic polynomials of a positive degree n with coefficients in the finite field Fq to be relatively prime turns out to be identical with the probability for an n×n Hankel matrix over Fq to be nonsingular. Motivated by this, we give an explicit map from pairs of coprime polynomials to nonsingular Hankel matrices that explains this connection. A basic tool used here is the classical notion of Bezoutian of two polynomials. Moreover, we give simpler and direct proofs of the general formulae for the number of m-tuples of relatively prime polynomials over Fq of given degrees and for the number of n×n Hankel matrices over Fq of a given rank.
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics