Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4656234 | Journal of Combinatorial Theory, Series A | 2009 | 8 Pages |
Abstract
A set S of unit vectors in n-dimensional Euclidean space is called spherical two-distance set, if there are two numbers a and b so that the inner products of distinct vectors of S are either a or b. It is known that the largest cardinality g(n) of spherical two-distance sets does not exceed n(n+3)/2. This upper bound is known to be tight for n=2,6,22. The set of mid-points of the edges of a regular simplex gives the lower bound L(n)=n(n+1)/2 for g(n).In this paper using the so-called polynomial method it is proved that for nonnegative a+b the largest cardinality of S is not greater than L(n). For the case a+b<0 we propose upper bounds on |S| which are based on Delsarte's method. Using this we show that g(n)=L(n) for 6
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics