Article ID Journal Published Year Pages File Type
4656301 Journal of Combinatorial Theory, Series A 2009 11 Pages PDF
Abstract

We say that a (d+1)-polytope P is an extension of a polytope K if the facets or the vertex figures of P are isomorphic to K. The Schläfli symbol of any regular extension of a regular polytope is determined except for its first or last entry. For any regular polytope K we construct regular extensions with any even number as first entry of the Schläfli symbol. These extensions are lattices if K is a lattice. Moreover, using the so-called CPR graphs we provide a more general way of constructing extensions of polytopes.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics