Article ID Journal Published Year Pages File Type
4656318 Journal of Combinatorial Theory, Series A 2007 16 Pages PDF
Abstract

A triangle {a(n,k)}0⩽k⩽n of nonnegative numbers is LC-positive if for each r, the sequence of polynomials is q-log-concave. It is double LC-positive if both triangles {a(n,k)} and {a(n,n−k)} are LC-positive. We show that if {a(n,k)} is LC-positive then the log-concavity of the sequence {xk} implies that of the sequence {zn} defined by , and if {a(n,k)} is double LC-positive then the log-concavity of sequences {xk} and {yk} implies that of the sequence {zn} defined by . Examples of double LC-positive triangles include the constant triangle and the Pascal triangle. We also give a generalization of a result of Liggett that is used to prove a conjecture of Pemantle on characteristics of negative dependence.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics