Article ID Journal Published Year Pages File Type
4656344 Journal of Combinatorial Theory, Series A 2007 23 Pages PDF
Abstract

A k-triangulation of a convex polygon is a maximal set of diagonals so that no k+1 of them mutually cross in their interiors. We present a bijection between 2-triangulations of a convex n-gon and pairs of non-crossing Dyck paths of length 2(n−4). This solves the problem of finding a bijective proof of a result of Jonsson for the case k=2. We obtain the bijection by constructing isomorphic generating trees for the sets of 2-triangulations and pairs of non-crossing Dyck paths.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics