Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4656364 | Journal of Combinatorial Theory, Series A | 2007 | 13 Pages |
Hyperplanes of the form xj=xi+c are called affinographic. For an affinographic hyperplane arrangement in Rn, such as the Shi arrangement, we study the function f(m) that counts integral points in n[1,m] that do not lie in any hyperplane of the arrangement. We show that f(m) is a piecewise polynomial function of positive integers m, composed of terms that appear gradually as m increases. Our approach is to convert the problem to one of counting integral proper colorations of a rooted integral gain graph.An application is to interval coloring in which the interval of available colors for vertex vi has the form [hi+1,m].A related problem takes colors modulo m; the number of proper modular colorations is a different piecewise polynomial that for large m becomes the characteristic polynomial of the arrangement (by which means Athanasiadis previously obtained that polynomial). We also study this function for all positive moduli.