Article ID Journal Published Year Pages File Type
4656979 Journal of Combinatorial Theory, Series B 2012 25 Pages PDF
Abstract

We consider the multiflow feasibility problem whose demand graph is the vertex-disjoint union of two triangles. We show that this problem has a 1/12-integral solution whenever it is feasible and satisfies the Euler condition. This solves a conjecture raised by Karzanov, and completes the classification of the demand graphs having bounded fractionality. We reduce this problem to the multiflow maximization problem whose terminal weight is the graph metric of the complete bipartite graph, and show that it always has a 1/12-integral optimal multiflow for every inner Eulerian graph.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics