Article ID Journal Published Year Pages File Type
4657288 Journal of Combinatorial Theory, Series B 2008 16 Pages PDF
Abstract

The Jones polynomial of an alternating link is a certain specialization of the Tutte polynomial of the (planar) checkerboard graph associated to an alternating projection of the link. The Bollobás–Riordan–Tutte polynomial generalizes the Tutte polynomial of graphs to graphs that are embedded in closed oriented surfaces of higher genus.In this paper we show that the Jones polynomial of any link can be obtained from the Bollobás–Riordan–Tutte polynomial of a certain oriented ribbon graph associated to a link projection. We give some applications of this approach.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics