Article ID Journal Published Year Pages File Type
4657302 Journal of Combinatorial Theory, Series B 2009 35 Pages PDF
Abstract

The chromatic polynomial PG(q) of a loopless graph G is known to be non-zero (with explicitly known sign) on the intervals (−∞,0), (0,1) and (1,32/27]. Analogous theorems hold for the flow polynomial of bridgeless graphs and for the characteristic polynomial of loopless matroids. Here we exhibit all these results as special cases of more general theorems on real zero-free regions of the multivariate Tutte polynomial ZG(q,v). The proofs are quite simple, and employ deletion–contraction together with parallel and series reduction. In particular, they shed light on the origin of the curious number 32/27.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics