Article ID Journal Published Year Pages File Type
4657368 Journal of Combinatorial Theory, Series B 2007 10 Pages PDF
Abstract

Let the k-graph Fank consist of k edges that pairwise intersect exactly in one vertex x, plus one more edge intersecting each of these edges in a vertex different from x. We prove that, for n sufficiently large, the maximum number of edges in an n-vertex k-graph containing no copy of Fank is , which equals the number of edges in a complete k-partite k-graph with almost equal parts. This is the only extremal example. This result is a special case of our more general theorem that applies to a larger class of excluded configurations.

Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics