Article ID Journal Published Year Pages File Type
4657966 Topology and its Applications 2016 10 Pages PDF
Abstract

Compactness type properties for operators acting in Banach function spaces are not always preserved when the operator is extended to a bigger space. Moreover, it is known that there exists a maximal (weakly) compact linear extension of a (weakly) compact operator if and only if its maximal continuous linear extension to its optimal domain is (weakly) compact. We show that the same happens if we consider AM-compactness for the operator, and we give some partial results regarding Dunford–Pettis operators. Narrow operators—considered as a family defined by a weak compactness type property—are also analyzed from this point of view. Finally, we provide some applications of the fact that an operator from a Banach function space extends to a narrow operator if and only if it is narrow.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology
Authors
, , , ,