Article ID Journal Published Year Pages File Type
4658763 Topology and its Applications 2014 26 Pages PDF
Abstract

Countable tightness may be destroyed by countably closed forcing. We characterize the indestructibility of countable tightness under countably closed forcing by combinatorial statements similar to the ones Tall used to characterize indestructibility of the Lindelöf property under countably closed forcing. We consider the behavior of countable tightness in generic extensions obtained by adding Cohen reals. We show that certain classes of well-studied topological spaces are indestructibly countably tight. Stronger versions of countable tightness, including selective versions of separability, are further explored.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology
Authors
,