Article ID Journal Published Year Pages File Type
4659394 Topology and its Applications 2011 22 Pages PDF
Abstract

In this paper, based upon the basic theory for glued manifolds in M.W. Hirsch (1976) [8, Chapter 8, §2 Gluing Manifolds Together], we give a method of constructing homeomorphisms between two small covers over simple convex polytopes. As a result we classify, up to homeomorphism, all small covers over a 3-dimensional prism P3(m) with m⩾3. We introduce two invariants from colored prisms and other two invariants from ordinary cohomology rings with Z2-coefficients of small covers. These invariants can form a complete invariant system of homeomorphism types of all small covers over a prism in most cases. Then we show that the cohomological rigidity holds for all small covers over a prism P3(m) (i.e., cohomology rings with Z2-coefficients of all small covers over a P3(m) determine their homeomorphism types). In addition, we also calculate the number of homeomorphism types of all small covers over P3(m).

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology