Article ID Journal Published Year Pages File Type
4659476 Topology and its Applications 2011 8 Pages PDF
Abstract

We study domain theoretic properties of complexity spaces. Although the so-called complexity space is not a domain for the usual pointwise order, we show that, however, each pointed complexity space is an ω-continuous domain for which the complexity quasi-metric induces the Scott topology, and the supremum metric induces the Lawson topology. Hence, each pointed complexity space is both a quantifiable domain in the sense of M. Schellekens and a quantitative domain in the sense of P. Waszkiewicz, via the partial metric induced by the complexity quasi-metric.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology