Article ID Journal Published Year Pages File Type
4659516 Topology and its Applications 2012 10 Pages PDF
Abstract

In recent work, Belishev and Sharafutdinov show that the generalized Dirichlet to Neumann (DN) operator Λ on a compact Riemannian manifold M with boundary ∂M determines de Rham cohomology groups of M. In this paper, we suppose G is a torus acting by isometries on M. Given X in the Lie algebra of G and the corresponding vector field XM on M, Witten defines an inhomogeneous coboundary operator dXM=d+ιXM on invariant forms on M. The main purpose is to adapt Belishev–Sharafutdinovʼs boundary data to invariant forms in terms of the operator dXM in order to investigate to what extent the equivariant topology of a manifold is determined by the corresponding variant of the DN map. We define an operator ΛXM on invariant forms on the boundary which we call the XM-DN map and using this we recover the XM-cohomology groups from the generalized boundary data (∂M,ΛXM). This shows that for a Zariski-open subset of the Lie algebra, ΛXM determines the free part of the relative and absolute equivariant cohomology groups of M. In addition, we partially determine the ring structure of XM-cohomology groups from ΛXM. These results explain to what extent the equivariant topology of the manifold in question is determined by ΛXM.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology