Article ID Journal Published Year Pages File Type
4659581 Topology and its Applications 2011 14 Pages PDF
Abstract

We mainly discuss the cardinal invariants and generalized metric properties on paratopological groups or rectifiable spaces, and show that: (1) If A and B are ω-narrow subsets of a paratopological group G, then AB is ω-narrow in G, which gives an affirmative answer for A.V. Arhangel'shiı̌ and M. Tkachenko (2008) [7, Open problem 5.1.9], ; (2) Every bisequential or weakly first-countable rectifiable space is metrizable; (3) The properties of Fréchet–Urysohn and strongly Fréchet–Urysohn coincide in rectifiable spaces; (4) Every rectifiable space G contains a (closed) copy of Sω if and only if G has a (closed) copy of S2; (5) If a rectifiable space G has a σ-point-discrete k-network, then G contains no closed copy of Sω1; (6) If a rectifiable space G is pointwise canonically weakly pseudocompact, then G is a Moscow space. Also, we consider the remainders of paratopological groups or rectifiable spaces, and answer two questions posed by C. Liu (2009) in [20], and C. Liu, S. Lin (2010) in [21], respectively.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology