Article ID Journal Published Year Pages File Type
4659633 Topology and its Applications 2009 9 Pages PDF
Abstract

A space X is said to have property (USC) (resp. (LSC)) if whenever is a sequence of upper (resp. lower) semicontinuous functions from X into the closed unit interval [0,1] converging pointwise to the constant function 0 with the value 0, there is a sequence of continuous functions from X into [0,1] such that fn⩽gn (n∈ω) and converges pointwise to 0. In this paper, we study spaces having these properties and related ones. In particular, we show that (a) for a subset X of the real line, X has property (USC) if and only if it is a σ-set; (b) if X is a space of non-measurable cardinal and has property (LSC), then it is discrete. Our research comes of Scheepers' conjecture on properties S1(Γ,Γ) and wQN.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology