Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4659649 | Topology and its Applications | 2009 | 18 Pages |
Abstract
When G is a profinite group and H and K are closed subgroups, with H normal in K, it is not known, in general, how to form the iterated homotopy fixed point spectrum (ZhH)hK/H, where Z is a continuous G-spectrum and all group actions are to be continuous. However, we show that, if G=Gn, the extended Morava stabilizer group, and , where is Bousfield localization with respect to Morava K-theory, En is the Lubin–Tate spectrum, and X is any spectrum with trivial Gn-action, then the iterated homotopy fixed point spectrum can always be constructed. Also, we show that is just , extending a result of Devinatz and Hopkins.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology