Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4659656 | Topology and its Applications | 2012 | 4 Pages |
Abstract
Let M be an orientable compact irreducible and ∂-irreducible 3-manifold, and suppose ∂M consists of two boundary components F1 and F2 with g(F1)=g(F2)>1. Let Mf be the closed orientable 3-manifold obtained by identifying F1 and F2 via a homeomorphism f:F1→F2. With the assumption that M is small or g(M,F1)=g(M)+g(F1), we show that if f is sufficiently complicated, then g(Mf)=g(M,∂M)+1.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology