Article ID Journal Published Year Pages File Type
4659722 Topology and its Applications 2010 8 Pages PDF
Abstract

Let X be a locally compact Polish space and G a non-discrete Polish ANR group. By C(X,G), we denote the topological group of all continuous maps endowed with the Whitney (graph) topology and by Cc(X,G) the subgroup consisting of all maps with compact support. It is known that if X is compact and non-discrete then the space C(X,G) is an l2-manifold. In this article we show that if X is non-compact and not end-discrete then Cc(X,G) is an (R∞×l2)-manifold, and moreover the pair (C(X,G),Cc(X,G)) is locally homeomorphic to the pair of the box and the small box powers of l2.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology