Article ID Journal Published Year Pages File Type
4659728 Topology and its Applications 2009 6 Pages PDF
Abstract

In this paper, we consider the following question: when does a topological group G have a Hausdorff compactification bG with a remainder belonging to a given class of spaces? We extend the results of A.V. Arhangel'skii by showing that if a remainder of a non-locally compact topological group G has a countable open point-network or a locally Gδ-diagonal, then G and the compactification bG of G are separable and metrizable.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology