Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4659733 | Topology and its Applications | 2009 | 12 Pages |
Little is known on the classification of Heegaard splittings for hyperbolic 3-manifolds. Although Kobayashi gave a complete classification of Heegaard splittings for the exteriors of 2-bridge knots, our knowledge of other classes is extremely limited. In particular, there are very few hyperbolic manifolds that are known to have a unique minimal genus splitting. Here we demonstrate that an infinite class of hyperbolic knot exteriors, namely exteriors of certain “twisted torus knots” originally studied by Morimoto, Sakuma and Yokota, have a unique minimal genus Heegaard splitting of genus two. We also conjecture that these manifolds possess irreducible yet weakly reducible splittings of genus three. There are no known examples of such Heegaard splittings.