Article ID Journal Published Year Pages File Type
4659917 Topology and its Applications 2010 4 Pages PDF
Abstract

We study M-separability as well as some other combinatorial versions of separability. In particular, we show that the set-theoretic hypothesis b=d implies that the class of selectively separable spaces is not closed under finite products, even for the spaces of continuous functions with the topology of pointwise convergence. We also show that there exists no maximal M-separable countable space in the model of Frankiewicz, Shelah, and Zbierski in which all closed P-subspaces of ω* admit an uncountable family of nonempty open mutually disjoint subsets. This answers several questions of Bella, Bonanzinga, Matveev, and Tkachuk.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology