Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4659917 | Topology and its Applications | 2010 | 4 Pages |
Abstract
We study M-separability as well as some other combinatorial versions of separability. In particular, we show that the set-theoretic hypothesis b=d implies that the class of selectively separable spaces is not closed under finite products, even for the spaces of continuous functions with the topology of pointwise convergence. We also show that there exists no maximal M-separable countable space in the model of Frankiewicz, Shelah, and Zbierski in which all closed P-subspaces of ω* admit an uncountable family of nonempty open mutually disjoint subsets. This answers several questions of Bella, Bonanzinga, Matveev, and Tkachuk.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology