Article ID Journal Published Year Pages File Type
4659934 Topology and its Applications 2012 9 Pages PDF
Abstract

We prove that every H(i) subset H of a connected space X such that there is no proper connected subset of X containing H, contains at least two non-cut points of X. This is used to prove that a connected space X is a COTS with endpoints if and only if X has at most two non-cut points and has an H(i) subset H such that there is no proper connected subset of X containing H. Also we obtain some other characterizations of COTS with endpoints and some characterizations of the closed unit interval.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology