Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4659986 | Topology and its Applications | 2009 | 6 Pages |
Abstract
Let π:X→Y be a surjective continuous map between Tychonoff spaces. The map π induces, by composition, an injective morphism C(Y)→C(X) between the corresponding rings of real-valued continuous functions, and this morphism allows us to consider C(Y) as a subring of C(X). This paper deals with finiteness properties of the ring extension C(Y)⊆C(X) in relation to topological properties of the map π:X→Y. The main result says that, for X a compact subset of Rn, the extension C(Y)⊆C(X) is integral if and only if X decomposes into a finite union of closed subsets such that π is injective on each one of them.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology