Article ID Journal Published Year Pages File Type
4660033 Topology and its Applications 2010 10 Pages PDF
Abstract

This work solves the problem of elaborating Ganea and Whitehead definitions for the tangential category of a foliated manifold. We develop these two notions in the category S-Top of stratified spaces, that are topological spaces X endowed with a partition F and compare them to a third invariant defined by using open sets. More precisely, these definitions apply to an element (X,F) of S-Top together with a class A of subsets of X; they are similar to invariants introduced by M. Clapp and D. Puppe.If (X,F)∈S-Top, we define a transverse subset as a subspace A of X such that the intersection S∩A is at most countable for any S∈F. Then we define the Whitehead and Ganea LS-categories of the stratified space by taking the infimum along the transverse subsets. When we have a closed manifold, endowed with a C1-foliation, the three previous definitions, with A the class of transverse subsets, coincide with the tangential category and are homotopical invariants.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology