Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4660157 | Topology and its Applications | 2008 | 8 Pages |
The celebrated Urysohn space is the completion of a countable universal homogeneous metric space which can itself be built as a direct limit of finite metric spaces. It is our purpose in this paper to give another example of a space constructed in this way, where the finite spaces are scaled cubes. The resulting countable space provides a context for a direct limit of finite symmetric groups with strictly diagonal embeddings, acting naturally on a module which additively is the “Nim field” (the quadratic closure of the field of order 2). Its completion is familiar in another guise: it is the set of Lebesgue-measurable subsets of the unit interval modulo null sets. We describe the isometry groups of these spaces and some interesting subgroups, and give some generalisations and speculations.