Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4660178 | Topology and its Applications | 2008 | 5 Pages |
Abstract
In this note, we show that if X is the union of a finite collection of strong Σ-spaces, then X is a D-space. As a corollary, we get a conclusion that if X is the union of a finite collection of Moore spaces, then X is a D-space. This gives a positive answer to one of Arhangel'skii's problems [A.V. Arhangel'skii, D-spaces and finite unions, Proc. AMS 132 (7) (2004) 2163–2170]. In the last part of the note, we show that if X is the union of a finite collection of DC-like spaces, then X is a D-space, where DC is the class of all discrete unions of compact spaces. As a corollary, we show that if X is the union of a finite collection of regular subparacompact C-scattered spaces, then X is a D-space.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology