Article ID Journal Published Year Pages File Type
4660248 Topology and its Applications 2008 7 Pages PDF
Abstract

Nagata conjectured that every M-space is homeomorphic to a closed subspace of the product of a countably compact space and a metric space. Although this conjecture was refuted by Burke and van Douwen, and A. Kato, independently, but we can show that there is a c.c.c. poset P of size ω2 such that in VP Nagata's conjecture holds for each first countable regular space from the ground model (i.e. if a first countable regular space X∈V is an M-space in VP then it is homeomorphic to a closed subspace of the product of a countably compact space and a metric space in VP). By a result of Morita, it is enough to show that every first countable regular space from the ground model has a first countable countably compact extension in VP. As a corollary, we also obtain that every first countable regular space from the ground model has a maximal first countable extension in model VP.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology