Article ID Journal Published Year Pages File Type
4660273 Topology and its Applications 2009 4 Pages PDF
Abstract

The main aim of this paper is to give a positive answer to a question of Behrends, Geschke and Natkaniec regarding the existence of a connected metric space and a non-constant real-valued continuous function on it for which every point is a local extremum. Moreover we show that real-valued continuous functions on connected spaces such that every family of pairwise disjoint non-empty open sets is of size <|R| are constant provided that every point is a local extremum.

Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology