Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4660284 | Topology and its Applications | 2009 | 8 Pages |
Abstract
It is well known that if (X,q) is an asymmetric normed linear space, then the function qs defined on X by qs(x)=max{q(x),q(−x)}, is a norm on the linear space X. However, the lack of symmetry in the definition of the asymmetric norm q yields an algebraic asymmetry in the dual space of (X,q). This fact establishes a significant difference with the standard results on duality that hold in the case of locally convex spaces. In this paper we study some aspects of a reflexivity theory in the setting of asymmetric normed linear spaces. In particular, we obtain a version of the Goldstine Theorem to these spaces which is applied to prove, among other results, a characterization of reflexive asymmetric normed linear spaces.
Related Topics
Physical Sciences and Engineering
Mathematics
Geometry and Topology